103 research outputs found

    UNCERTAINTY IN SPATIALLY EXPLICIT ANIMAL DISPERSAL MODELS

    Get PDF

    Global dynamics of a mutualism–competition model with one resource and multiple consumers

    Get PDF
    Recent simulation modeling has shown that species can coevolve toward clusters of coexisting consumers exploiting the same limiting resource or resources, with nearly identical ratios of coefficients related to growth and mortality. This paper provides a mathematical basis for such as situation; a full analysis of the global dynamics of a new model for such a class of n-dimensional consumer–resource system, in which a set of consumers with identical growth to mortality ratios compete for the same resource and in which each consumer is mutualistic with the resource. First, we study the system of one resource and two consumers. By theoretical analysis, we demonstrate the expected result that competitive exclusion of one of the consumers can occur when the growth to mortality ratios differ. However, when these ratios are identical, the outcomes are complex. Either equilibrium coexistence or mutual extinction can occur, depending on initial conditions. When there is coexistence, interaction outcomes between the consumers can transition between effective mutualism, parasitism, competition, amensalism and neutralism. We generalize to the global dynamics of a system of one resource and multiple consumers. Changes in one factor, either a parameter or initial density, can determine whether all of the consumers either coexist or go to extinction together. New results are presented showing that multiple competing consumers can coexist on a single resource when they have coevolved toward identical growth to mortality ratios. This coexistence can occur because of feedbacks created by all of the consumers providing amutualistic service to the resource. This is biologically relevant to the persistence of pollination–mutualisms

    Effects of Natal Departure and Water Level on Survival of Juvenile Snail Kites (\u3ci\u3eRostrhamus sociabilis\u3c/i\u3e) in Florida

    Get PDF
    Survival rate from fledging to breeding, or juvenile survival, is an important source of variation in lifetime reproductive success in birds. Therefore, determining the relation-ship between juvenile survival and environmental factors is essential to understanding fitness consequences of reproduction in many populations. With increases in density of individuals and depletion of food resources, quality of most habitats deteriorates during the breeding season. Individuals respond by dispersing in search of food resources. Therefore, to understand the influence of environmental factors on juvenile survival, it is also necessary to know how natal dispersal influences survival of juveniles. We examined effects of various environmental factors and natal dispersal behavior on juvenile survival of endangered Snail Kites (Rostrhamus sociabilis) in central and southern Florida, using a generalized estimating equations (GEEs) approach and model selection criteria. Our results suggested yearly effects and an influence of age and monthly minimum hydrologic levels on juvenile Snail Kite survival. Yearly variation in juvenile survival has been reported by other studies, and other reproductive components of Snail Kites also exhibit such variation. Age differences in juvenile survival have also been seen in other species during the juvenile period. Our results demonstrate a positive relationship between water levels and juvenile survival. We suggest that this is not a direct linear relationship, such that higher water means higher juvenile survival. The juvenile period is concurrent with onset of the wet season in the ecosystem we studied, and rainfall increases as juveniles age. For management purposes, we believe that inferences suggesting increasing water levels during the fledging period will increase juvenile survival may have short-term benefits but lead to long-term declines in prey abundance and possibly wetland vegetation structure

    Decision-Making in Agent-Based Modeling: A Current Review and Future Prospectus

    Get PDF
    All basic processes of ecological populations involve decisions; when and where to move, when and what to eat, and whether to fight or flee. Yet decisions and the underlying principles of decision-making have been difficult to integrate into the classical population-level models of ecology. Certainly, there is a long history of modeling individuals' searching behavior, diet selection, or conflict dynamics within social interactions. When all the individuals are given certain simple rules to govern their decision-making processes, the resultant population–level models have yielded important generalizations and theory. But it is also recognized that such models do not represent the way real individuals decide on actions. Factors that influence a decision include the organism's environment with its dynamic rewards and risks, the complex internal state of the organism, and its imperfect knowledge of the environment. In the case of animals, it may also involve complex social factors, and experience and learning, which vary among individuals. The way that all factors are weighed and processed to lead to decisions is a major area of behavioral theory.While classic population-level modeling is limited in its ability to integrate decision-making in its actual complexity, the development of individual- or agent-based models (IBM/ABMs) (we use ABM throughout to designate both “agent-based modeling” and an “agent-based model”) has opened the possibility of describing the way that decisions are made, and their effects, in minute detail. Over the years, these models have increased in size and complexity. Current ABMs can simulate thousands of individuals in realistic environments, and with highly detailed internal physiology, perception and ability to process the perceptions and make decisions based on those and their internal states. The implementation of decision-making in ABMs ranges from fairly simple to highly complex; the process of an individual deciding on an action can occur through the use of logical and simple (if-then) rules to more sophisticated neural networks and genetic algorithms. The purpose of this paper is to give an overview of the ways in which decisions are integrated into a variety of ABMs and to give a prospectus on the future of modeling of decisions in ABMs

    Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology

    Get PDF
    Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities

    Fish Cohort Dynamics: Application of Complementary Modeling Approaches

    Get PDF
    The recruitment to the adult stock of a fish population is a function of both environmental conditions and the dynamics of juvenile fish cohorts. These dynamics can be quite complicated and involve the size structure of the cohort. Two types of models, i-state distribution models (e.g., partial differential equations) and i-state configuration models (computer simulation models following many individuals simultaneously), have been developed to study this type of question. However, these two model types have not to our knowledge previously been compared in detail. Analytical solutions are obtained for three partial differential equation models of early life-history fish cohorts. Equivalent individual-by-individual computer simulation models are also used. These two approaches can produce similar results, which suggests that one may be able to use the approaches interchangeably under many circumstances. Simple uncorrected stochasticity in daily growth is added to the individual-by-individual models, and it is shown that this produces no significant difference from purely deterministic situations. However, when the stochasticity was temporally correlated such that a fish growing faster than the mean 1 d has a tendency to grow faster than the mean the next day, there can be great differences in the outcomes of the simulations.This research was sponsored in part by the Electric Power Research Institute under contract no. RP2932-2 (DOE no. ERD-87-672) with the U.S. Department of Energy under contract no. DE-AC05-84OR21400 with Martin Marietta Energy Systems, and in part by grant no. NAI6RG0492-01 from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) to the University of North Carolina Sea Grant College Program

    Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Get PDF
    Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information

    Moving forward in circles: challenges and opportunities in modelling population cycles

    Get PDF
    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
    corecore